241 research outputs found

    Kinetic energy release in electron-induced decay reactions of molecular ions: C3H8+ and C3H7+

    Get PDF
    We have measured the kinetic energy release (KER) distributions for electron-induced dissociation of mass-selected molecular parent and fragment ions of propane. They are compared with distributions determined for spontaneous (metastable) dissociation. The average KER for induced dissociation of C3H8+ into C3H7+ is 13.2 +/- 1.2 meV, about 42% larger than for the spontaneous reaction. This large difference is attributed to the dramatically reduced time at which the induced reaction can be sampled. In contrast, the KER for dissociation of C3H7+ into C3H5+, which is characterized by a large reverse activation energy, is hardly affected by the experimental time scale. (C) 2000 American Institute of Physics. [S0021-9606(00)00826-6]

    High resolution measurements of kinetic energy release distributions of neon, argon, and krypton cluster ions using a three sector field mass spectrometer

    Get PDF
    Using a newly constructed three sector field mass spectrometer (resulting in a BE1E2 field configuration) we have measured the kinetic energy release distributions of neon, argon, and krypton cluster ions. In the present study we used the first two sectors, B and E1, constituting a high resolution mass spectrometer, to select the parent ions in terms of mass, charge, and energy, and studied the decay of those ions in the third field free region. Due to the improved mass resolution we were able to extend earlier studies carried out with a two sector field machine, where an upper size limit arose from the fact that several isotopomers contribute to a decaying parent ion beam when the cluster size exceeds a certain value. Furthermore we developed a new data analysis. It allows us to model also fragment ion peaks that are a superposition of different decay reactions and thus we can determine the average kinetic energy release for all decay reactions of a given cluster ion. In a further step we used these results to determine the binding energies of cluster ions Rg(n) (ngreater than or equal to10) by applying finite heat bath theory. The smaller sizes have not been included in this analysis, because the validity of finite heat bath theory becomes questionable below napproximate to10. The present average kinetic energy releases and binding energies are compared with other experiments and various calculations. (C) 2004 American Institute of Physics

    Kinetic-energy release in Coulomb explosion of metastable C3H52+

    Get PDF
    C3H52+, formed by electron impact ionization of propane, undergoes metastable decay into C2H2++CH3+. We have monitored this reaction in a magnetic mass spectrometer of reversed geometry that is equipped with two electric sectors (BEE geometry). Three different techniques were applied to identify the fragment ions and determine the kinetic-energy release (KER) of spontaneous Coulomb explosion of C3H52+ in the second and third field free regions of the mass spectrometer. The KER distribution is very narrow, with a width of about 3% [root-mean square standard deviation]. An average KER of 4.58+/-0.15 eV is derived from the distribution. High level ab initio quantum-chemical calculations of the structure and energetics of C3H52+ are reported. The activation barrier of the reverse reaction, CH3++C2H2+ (vinylidene), is computed. The value closely agrees with the experimental average KER, thus indicating that essentially all energy available in the reaction is partitioned into kinetic energy. (C) 2003 American Institute of Physics

    Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.

    Get PDF
    Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS

    Electron Collisions with CO Molecule: An R-Matrix Study Using a Large Basis Set

    Get PDF
    Fixed-nuclei R -matrix calculations are performed at the equilibrium geometry of carbon monoxide using the very large cc-pV6Z Gaussian basis set. Results from a close-coupling model involving 27 low-lying target states indicate the presence of three2Σ+ resonances at 10.1 eV (width 0.1 eV), 10.38 eV (0.0005 eV), and 11.15 eV (0.005 eV), a2Δ resonance at 13.3 eV (0.1 eV) and two2Π resonances at 1.9 eV (1.3 eV) and 12.8 eV (0.1 eV). These new results are in very good agreement with many experimental studies but in contrast to a previous calculation using a smaller cc-pVTZ basis set where we found only one2Σ+ resonances at 12.9 eV. This is the first time that any theoretical study has reported these high lying2Σ+ resonances in agreement to experiment and reported detection of a2Δ resonance. Total, elastic and electronic excitation cross sections of CO by electron impact are also presented

    Systemic Delivery of an Adjuvant CXCR4-CXCL12 Signaling Inhibitor Encapsulated in Synthetic Protein Nanoparticles for Glioma Immunotherapy

    Get PDF
    Glioblastoma (GBM) is an aggressive primary brain cancer, with a 5 year survival of ∼5%. Challenges that hamper GBM therapeutic efficacy include (i) tumor heterogeneity, (ii) treatment resistance, (iii) immunosuppressive tumor microenvironment (TME), and (iv) the blood-brain barrier (BBB). The C-X-C motif chemokine ligand-12/C-X-C motif chemokine receptor-4 (CXCL12/CXCR4) signaling pathway is activated in GBM and is associated with tumor progression. Although the CXCR4 antagonist (AMD3100) has been proposed as an attractive anti-GBM therapeutic target, it has poor pharmacokinetic properties, and unfavorable bioavailability has hampered its clinical implementation. Thus, we developed synthetic protein nanoparticles (SPNPs) coated with the transcytotic peptide iRGD (AMD3100-SPNPs) to target the CXCL2/CXCR4 pathway in GBM via systemic delivery. We showed that AMD3100-SPNPs block CXCL12/CXCR4 signaling in three mouse and human GBM cell cultures in vitro and in a GBM mouse model in vivo. This results in (i) inhibition of GBM proliferation, (ii) reduced infiltration of CXCR4+ monocytic myeloid-derived suppressor cells (M-MDSCs) into the TME, (iii) restoration of BBB integrity, and (iv) induction of immunogenic cell death (ICD), sensitizing the tumor to radiotherapy and leading to anti-GBM immunity. Additionally, we showed that combining AMD3100-SPNPs with radiation led to long-term survival, with ∼60% of GBM tumor-bearing mice remaining tumor free after rechallenging with a second GBM in the contralateral hemisphere. This was due to a sustained anti-GBM immunological memory response that prevented tumor recurrence without additional treatment. In view of the potent ICD induction and reprogrammed tumor microenvironment, this SPNP-mediated strategy has a significant clinical translation applicability.Fil: Alghamri, Mahmoud S.. University Of Michigan Medical School; Estados UnidosFil: Banerjee, Kaushik. University Of Michigan Medical School; Estados UnidosFil: Mujeeb, Anzar A.. University Of Michigan Medical School; Estados UnidosFil: Mauser, Ava. University of Michigan; Estados UnidosFil: Taher, Ayman. University Of Michigan Medical School; Estados UnidosFil: Thalla, Rohit. University Of Michigan Medical School; Estados UnidosFil: McClellan, Brandon L.. University Of Michigan Medical School; Estados UnidosFil: Varela, Maria L.. University Of Michigan Medical School; Estados UnidosFil: Stamatovic, Svetlana M.. University Of Michigan Medical School; Estados UnidosFil: Martinez Revollar, Gabriela. University Of Michigan Medical School; Estados UnidosFil: Andjelkovic, Anuska V.. University Of Michigan Medical School; Estados UnidosFil: Gregory, Jason V.. University of Michigan; Estados UnidosFil: Kadiyala, Padma. University Of Michigan Medical School; Estados UnidosFil: Calinescu, Alexandra. University Of Michigan Medical School; Estados UnidosFil: Jiménez, Jennifer A.. University of Michigan; Estados UnidosFil: Apfelbaum, April A.. University of Michigan; Estados UnidosFil: Lawlor, Elizabeth R.. University of Washington; Estados UnidosFil: Carney, Stephen. University of Michigan; Estados UnidosFil: Comba, Andrea. University Of Michigan Medical School; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Faisal, Syed Mohd. University Of Michigan Medical School; Estados UnidosFil: Barissi, Marcus. University Of Michigan Medical School; Estados UnidosFil: Edwards, Marta B.. University Of Michigan Medical School; Estados UnidosFil: Appelman, Henry. University Of Michigan Medical School; Estados UnidosFil: Sun, Yilun. Case Western Reserve University; Estados UnidosFil: Gan, Jingyao. University of Michigan; Estados UnidosFil: Ackermann, Rose. University of Michigan; Estados UnidosFil: Schwendeman, Anna. University of Michigan; Estados UnidosFil: Candolfi, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Olin, Michael R.. University of Minnesota; Estados UnidosFil: Lahann, Joerg. University of Michigan; Estados UnidosFil: Lowenstein, Pedro R.. University of Michigan; Estados UnidosFil: Castro, Maria G.. University of Michigan; Estados Unido

    A review of the international early recommendations for departments organization and cancer management priorities during the global COVID-19 pandemic: applicability in low- and middle-income countries.

    Get PDF
    Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a new virus that has never been identified in humans before. COVID-19 caused at the time of writing of this article, 2.5 million cases of infections in 193 countries with 165,000 deaths, including two-third in Europe. In this context, Oncology Departments of the affected countries had to adapt quickly their health system care and establish new organizations and priorities. Thus, numerous recommendations and therapeutic options have been reported to optimize therapy delivery to patients with chronic disease and cancer. Obviously, while these cancer care recommendations are immediately applicable in Europe, they may not be applicable in certain emerging and low- and middle-income countries (LMICs). In this review, we aimed to summarize these international guidelines in accordance with cancer types, making a synthesis for daily practice to protect patients, staff and tailor anti-cancer therapy delivery taking into account patients/tumour criteria and tools availability. Thus, we will discuss their applicability in the LMICs with different organizations, limited means and different constraints

    Characterization of early host responses in adults with dengue disease

    Get PDF
    BACKGROUND: While dengue-elicited early and transient host responses preceding defervescence could shape the disease outcome and reveal mechanisms of the disease pathogenesis, assessment of these responses are difficult as patients rarely seek healthcare during the first days of benign fever and thus data are lacking. METHODS: In this study, focusing on early recruitment, we performed whole-blood transcriptional profiling on dengue virus PCR positive patients sampled within 72 h of self-reported fever presentation (average 43 h, SD 18.6 h) and compared the signatures with autologous samples drawn at defervescence and convalescence and to control patients with fever of other etiology. RESULTS: In the early dengue fever phase, a strong activation of the innate immune response related genes were seen that was absent at defervescence (4-7 days after fever debut), while at this second sampling genes related to biosynthesis and metabolism dominated. Transcripts relating to the adaptive immune response were over-expressed in the second sampling point with sustained activation at the third sampling. On an individual gene level, significant enrichment of transcripts early in dengue disease were chemokines CCL2 (MCP-1), CCL8 (MCP-2), CXCL10 (IP-10) and CCL3 (MIP-1α), antimicrobial peptide β-defensin 1 (DEFB1), desmosome/intermediate junction component plakoglobin (JUP) and a microRNA which may negatively regulate pro-inflammatory cytokines in dengue infected peripheral blood cells, mIR-147 (NMES1). CONCLUSIONS: These data show that the early response in patients mimics those previously described in vitro, where early assessment of transcriptional responses has been easily obtained. Several of the early transcripts identified may be affected by or mediate the pathogenesis and deserve further assessment at this timepoint in correlation to severe disease

    Dissecting the Autocrine and Paracrine Roles of the CCR2-CCL2 Axis in Tumor Survival and Angiogenesis

    Get PDF
    The CCL2 CCR2 axis is likely to contributes to the development and progression of cancer diseases by two major mechanisms; autocrine effect of CCL2 as a survival/growth factor for CCR2+ cancer cells and, the attraction of CCR2+ CX3CR1+tumor associated macrophages that in the absence of CCR2 hardly migrate. Thus far no in vivo system has been set up to differentiate the selective contribution of each of these features to cancer development. Here we employed a chimera animal model in which all non-malignant cells are CCR2−/−, but all cancer cells are CCR2+, combined with an adoptive transfer system of bone marrow (BM) CX3CR1+ cells from CCR2+ mice harboring a targeted replacement of the CX3CR1gene by an enhanced green fluorescent protein (EGFP) reporter gene (cx3cr1gfp), together with the CD45.1 congene. Using this system we dissected the selective contribution of CX3CR1+CCR2+ cells, which comprise only about 7% of CD11b+ BM cells, to tumor development and angiogenesis. Showing that aside for their direct pro-angiogenic effect they are essential for the recruitment of other CD11b+ cells to the tumor site. We further show that the administration of CCR2-Ig, that selectively and specifically neutralize CCL2, to mice in which CCR2 is expressed only on tumor cells, further suppressed tumor development, implicating for the key role of this chemokine supporting tumor survival in an autocrine manner. This further emphasizes the important role of CCL2 as a target for therapy of cancer diseases
    corecore